WHAT IS CAR PLATFORM DESIGN?
In essence, car platform design revolves around one big question: How can an automotive project be realized? To answer this question, the complete vehicle must be viewed from three perspectives.
Number 1: Geometry and structure
The first factor to regard in automotive design and architecture is, of course, the actual layout of the car platform. While the rise of EVs has significantly altered the way cars can be planned, they still need battery packs, a chassis, a body, a driver’s space and so on. The same automotive vision usually also comes with certain derivatives that alter its interior layout from the number of passenger seats to its height and the position of individual elements. With the increase in platform modularity (which we will talk about in a moment), structure must now also regard increasingly diverse size and weight classes. If a vehicle needs to support a varying number of battery packs, or more simply, is manufactured for two markets in two distinct locations, then its structure must be set out in a way that those changes don’t impact the rest of the car.1
Number 2: Functionalities and attributes
The second major factor that impacts the way a car is designed is the list of things it can do – aka its functions and technical attributes. Those range from complete vehicle functions such as interior acoustics, safety ratings, and top speed to system-specific factors such as the existence of electric & electronic architecture, certain ADAS systems, and components or battery performance. Functions are - in a manner of speaking - the “character” of a vehicle, highlighting how it performs in certain areas and what exactly it offers to consumers.2
Number 3: Styling or look-and-feel
Of course, features are not the only relevant aspect for end customers. Behind every vehicle idea there is a vision, a general image that this car should convey to the public. How it’s shaped from the outside, how it looks and sounds while in motion, how its interior is laid out, how it feels to enter, start and drive the car – all various large and small factors that define the customer experience and turn its manufacturer’s vision into reality. The styling of a vehicle often defines the boundaries in which a vehicle can be realized, but it can also function as the glue that binds a vehicle series together.3
How to bring car design together
Bringing these three perspectives in line with each other will, of course, not always go seamlessly. Structural limitations, functional requirements, and styling guidelines are often at odds with each other in several larger and smaller areas. Good automotive design requires finding the optimum middle ground between structure, functionalities, and styling.
For example, one of the numerous features relevant in the exact outline of a car is the way it interacts with the air it is moving through. Vehicle aerodynamics impact a car’s top speed and fuel/battery efficiency, as well as interior acoustics, and even how well dirt falls from its surface. Therefore, reaching aerodynamic efficiency by way of reducing the lift and (especially) drag forces affecting a vehicle is an important goal for vehicle designers.
Aerodynamics as an attribute is primarily dependent on the size and shape of a vehicle, as its front, the number of surface openings, etc. all affect the way a car “cuts” through the air. But if only the functional side of matters is regarded in terms of aerodynamics, then every vehicle on the market would essentially be shaped like a bullet train.
This would obviously impact not only the vehicle’s styling, but also come at an expense to the interior space and subsequently passenger comfort and other features, such as acoustics or a car’s interface.
Vehicle design has to find a middle ground among these three factors in a way that retains a minimal Cd (drag co-efficient) value, while not impacting other, potentially more relevant features or its styling. And of course, it must also abide by the structural preconditions set by its platform structure. This is true for all functions and attributes of a vehicle, and it requires a competent and reliable team of vehicle designers and architects as well as the simulation tools necessary to collect the data needed.